BEA-401 Energy, Ecology, Environment and Society

UNIT -I

Sources of Energy : Renewable & Non Renewable, Fossil fuel, Biomass Geothermal, Hydrogen, Solar, Wind, hydro, nuclear sources.

UNIT-II

Segments of Environment: Atmosphere, hydrosphere, Lithosphere, biosphere. Cycles in Ecosystem – Water, Carbon, Nitrogen. Biodiversity: Threats and conservation

UNIT-III

Air Pollution: Air pollutants, classification, (Primary & secondary Pollutants) Adverse effects of pollutants. Causes of Air pollution chemical, photochemical, Green house effect, ozone layer depletion, acid Rain. Sound Pollution: Causes, controlling measures, measurement of sound pollution (deciblage), Industrial and non – industrial.

UNIT-IV

Water Pollution– Water Pollution: Pollutants in water, adverse effects. Treatment of Domestic & Industrial water effluent. Soil Pollution – Soil Profile, Pollutants in soil, their adverse effects, controlling measures.

UNIT-V

Society, Ethics & Human values– Impact of waste on society. Solid waste management Nuclear, Thermal, Plastic, medical, Agriculture, domestic and e-waste). Ethics and moral values, ethical situations, objectives of ethics and its study. Preliminary studies regarding Environmental Protection Acts, introduction to value education, self exploration, sanyam & swasthya.

REFERENCES:

- 1. Harris, CE, Prichard MS, Rabin's MJ, "Engineering Ethics"; Cengage Pub.
- 2. Rana SVS ; "Essentials of Ecology and Environment"; PHI Pub.
- 3. Raynold, GW "Ethics in information Technology"; Cengage.
- 4. Svakumar; Energy Environment & Ethics in society; TMH
- 5. AK De "Environmental Chemistry"; New Age Int. Publ.
- 6. BK Sharma, "Environmental Chemistry"; Goel Publ. House.
- 7. Bala Krishnamoorthy; "Environmental management"; PHI
- 8. Gerard Kiely, "Environmental Engineering"; TMH
- 9. Miller GT JR; living in the Environment Thomson/cengage
- 10. Cunninghan WP and MA; principles of Environment Sc; TMH
- 11. Gandhiji M.K.- My experiments with truth

ITA- 402 Computer Architecture

UNIT-I

Computer architecture and organization, computer generations, von Neumann model, CPU organization, CPU organization, Register organization, Various CPU register, Register Transfer, Bus and Memory Transfers, Arithmetic, Logic and Shift micro-operations, Arithmetic logic shift unit.

UNIT-II

The arithmetic and logic unit, Fixed-Point representation: integer representation, sign- magnitude, 1's and 2's complement and range, Integer arithmetic: negation, addition and subtraction, multiplication, division, Floating-Point representation, Floating-Point arithmetic, Hardwired micro-programmed control unit, Control memory, Micro-program sequence.

UNIT-III

Central Progressing Unit (CPU), Stack Organization, Memory Stack, Reverse Polish Notation. Instruction Formats, Zero, One, Two, Three- Address Instructions, RISC Instructions and CISC Characteristics, Addressing Modes, Modes of Transfer, Priority Interrupt, Daisy Chaining, DMA, Input-Output Processor (IOP).

UNIT-IV

Computer memory system, Memory hierarchy, main memory: RAM, ROM chip, auxiliary and associative memory, Cache memory: associative mapping, direct mapping, set- associative mapping, write policy, cache performance, Virtual memory: address space, memory space, address mapping, paging and segmentation, TLB, page fault, effective access time, replacement algorithm.

UNIT-V

Parallel Processing, Pipelining General Consideration, Arithmetic Pipeline, and Instruction Pipeline, Vector Operations, Matrix Multiplication, and Memory Interleaving, Multiprocessors, Characteristics of Multiprocessors.

Reference Books:-

- 1. M. Morris Mano, "Computer System Architecture", Pearson.
- 2. Dr. M. Usha, T.S. Srikanth, "Computer System Architecture and Organization", Wiley India.
- 3. William Stallings, "Computer Organization and Architecture", Pearson.
- 4. V. Rajaraman, T. Radhakrishnan, "Computer Organization and Architecture", PHI.

ITA- 403 Analysis And Design Of Algorithm

UNIT-I

Algorithms, Designing algorithms, analyzing algorithms, asymptotic notations, heap and heap sort. Introduction to divide and conquer technique, analysis, design and comparison of various algorithms based on this technique, example binary search, merge sort, quick sort, strassen's matrix multiplication.

UNIT-II

Study of Greedy strategy, examples of greedy method like optimal merge patterns, Huffman coding, minimum spanning trees, knapsack problem, job sequencing with deadlines, single source shortest path algorithm, etc.

UNIT-III

Concept of dynamic programming, problems based on this approach such as 0/1 knapsack, multistage graph, reliability design, Floyd-Warshall algorithm, etc.

UNIT-IV

Backtracking concept and its examples like 8 queen's problem, Hamiltonian cycle, Graph coloring problem etc. Introduction to branch & bound method, examples of branch and bound method like traveling salesman problem etc. Meaning of lower bound theory and its use in solving algebraic problem, introduction to parallel algorithms.

UNIT-V

Binary search trees, height balanced trees, 2-3 trees, B-trees, basic search and traversal techniques for trees and graphs (In order, preorder, postorder, DFS, BFS), NP-completeness.

Reference Books:-

1. Coremen Thomas, Leiserson CE, Rivest RL; Introduction to Algorithms; PHI.

- 2. Horowitz & Sahani; Analysis & Design of Algorithm
- 3. Dasgupta; algorithms; TMH
- 4. Ullmann; Analysis & Design of Algorithm;
- 5. Michael T Goodrich, Robarto Tamassia, Algorithm Design, Wiely India

- 1. Write a program for Iterative and Recursive Binary Search.
- 2. Write a program for Merge Sort.
- 3. Write a program for Quick Sort.
- 4. Write a program for Strassen's Matrix Multiplication.
- 5. Write a program for optimal merge patterns.
- 6. Write a program for Huffman coding.
- 7. Write a program for minimum spanning trees using Kruskal's algorithm.
- 8. Write a program for minimum spanning trees using Prim's algorithm.
- 9. Write a program for single sources shortest path algorithm.
- 10. Write a program for Floye-Warshal algorithm.
- 11. Write a program for traveling salesman problem.
- 12. Write a program for Hamiltonian cycle problem.

ITA- 404 Analog & Digital Comm.

Unit-I

Signals and Systems: Block diagram of a communication system, signal-definition, types of signals continuous, discrete, deterministic, non-deterministic, periodic, non-periodic, energy, power, analog and digital signals. Electromagnetic Spectra, Standard signals- DC, sinusoidal, unit step, ramp, signum, rectangular pulse, impulse(delta) signal. System definition, classification of systems, linear, nonlinear, time variant, time invariant, causal, non causal, stable and unstable systems. Fourier transforms: Time domain and frequency domain representation of signal, Fourier Transform and its properties, conditions for existence, Transform of Gate, unit step, constant, impulse, sine and cosine wave. Shifting property of delta function, convolution, time and frequency convolution theorems.

UNIT-II

Amplitude modulation: Modulation, need of modulation, types of modulation techniques, amplitude modulation (DSB-FC), modulation index, frequency spectrum of AM wave, linear and over modulation, power relation in AM, transmission efficiency, modulation by a complex signal, bandwidth of AM, AM modulators, square law and switching modulator, advantages and disadvantages of AM. Demodulation of AM: Suppressed carrier amplitude modulation systems, DSB-SC, SSB-SC, VSB-SC systems, comparison of various amplitude modulation systems. Demodulation of AM, square law and envelope detector, synchronous detection of AM, Low and high power AM transmitters, AM receivers, TRF and superheterodyne receivers, sensitivity, selectivity and fidelity of receivers.

UNIT-III

Angle modulation: Introduction and types of angle modulation, frequency modulation, frequency deviation, modulation index, deviation ratio, bandwidth requirement of FM wave, types of FM. Phase modulation, difference between FM and PM, Direct and indirect method of FM generation, FM demodulators- slope detector, Foster seeley discriminator, ratio detector. Introduction to pulse modulation systems.

UNIT-IV

Sampling of signal, sampling theorem for low pass and Band pass signal, Pulse amplitude modulation (PAM), Time division, multiplexing (TDM). Channel Bandwidth for PAM-TDM signal Type of sampling instantaneous, Natural and flat top, Aperture effect, Introduction to pulse position and pulse duration modulations, Digital signal, Quantization, Quantization error, Pulse code modulation, signal to noise ratio, Companding, Data rate and Baud rate, Bit rate, multiplexed PCM signal, Differential PCM (DPCM), Delta Modulation (DM) and Adaptive Delta Modulation (ADM), comparison of various systems.

UNIT-V

Digital modulations techniques, Generation, detection, equation and Bandwidth of amplitude shift keying (ASK) Binary Phase Shift keying (BPSK), Differential phase shift keying (DPSK), offset and non offset quadrature phase shift keying (QPSK), M-Ary PSK, Binary frequency Shift Keying (BFSK), M-Ary FSK Quadrature Amplitude modulation (QAM).

Reference Books:

- 1. Singh & Sapre, "Communication Systems", TMH.
- 2. Taub Schilling, "Principles of Communication Systems", TMH.
- 3. W. Tomasi "Electronic Communications Systems", Pearson Education Pvt. Ltd.
- 4. Taub & shilling, "Communication Systems", TMH.
- 5. Abhay Gandhi, "Analog and Digital Communication", CENGAGE Learning.

- 1. AM Modulation and Demodulation (Envelope Detector)
- 2. Frequency modulation using reactance modulator.
- 3. Frequency modulation using varactor modulator.
- 4. Pulse Amplitude Modulation and Demodulation
- 5. Pre-emphasis and De-emphasis
- 6. Analog Multiplexing.
- 7. Amplitude Modulation using Pspice
- 8. Receiver characteristics (selectivity, sensitivity, fidelity).
- 9. Operation of foster-seeley loop detector.
- 10. Operation of ratio detector.

ITA- 405 Data Base Management System

UNIT-I

Basic Concepts: Introduction to DBMS, File system vs DBMS, Advantages of database systems, Database System architecture, Data models, Schemas and instances, Data independence, Functions of DBA and designer, Entities and attributes, Entity types, Key attributes, Relationships, Defining the E-R diagram of database.

UNIT-II

Relational Model: Structure of relational databases, Domains, Relations, Relational algebra – fundamental operators and syntax, relational algebra queries, Entity-Relationship model :Basic concepts, Design process, constraints, Keys, Design issues, E-R diagrams, weak entity sets, extended E-R features –generalization, specialization and aggregation

UNIT-III

SQL: Data definition in SQL, update statements and views in SQL: Data storage and definitions, Data retrieval queries and update statements, Query Processing & Query Optimization: Overview, measures of query cost, selection operation, sorting, join, evaluation of expressions, transformation of relational expressions, estimating statistics of expression results, evaluation plans. Case Study of ORACLE and DB2.

UNIT-IV

Relational Database design: Functional Dependency –definition, trivial and non-trivial FD, closure of FD set, closure of attributes, irreducible set of FD, Normalization –1NF, 2NF, 3NF, Decomposition using FD-dependency preservation, lossless join, BCNF, Multi-valued dependency, 4NF, Join dependency and 5NF

UNIT-V

Introduction of transaction, transaction processing and recovery, Concurrency control: Lock management, specialized locking techniques, concurrency control without locking, Protection and Security Introduction to: Distributed databases, Basic concepts of object oriented data base system.

Reference Books:

- 1. Korth, Silbertz, Sudarshan, "Database Concepts", McGraw Hill.
- 2. Elmasri, Navathe, "Fundamentals of Database Systems", Pearson.
- 3. Ivan Bayross, "SQL, PL/SQL the Programming Language of Oracle", BPB publications.
- 4. S. Sharma, J. Agrawal, S. Agrawal, "Advanced Database Management System", Dreamtech Press.
- 5. Leon & Leon, "Fundamental of Data Base Management System", TMH

- 1. To perform various SQL Commands of DDL, DML, DCL.
- 2. Write SQL Commands such as Insertion, deletion and updation for anyschema.
- 3. To execute Nested Queries, Join Queries, order-by, having clause and stringoperation.
- 4. To perform set operators like Union, Intersect, Minus on a set of tables.
- 5. To execute various commands for GROUP functions (avg, count, max, min, Sum).
- 6. Write a PL/SQL block for transaction application using Triggers.
- 7. Write a DBMS program to prepare report for an application using function.
- 8. Designing of various Input screens/Forms.
- 9. Create reports using database connectivity of Front end with backend.
- 10. Create database Design with normalization and implementing in any application.

ITA- 406 Introduction to MATLAB/SciLab/Web Design

Introduction to MATLAB/SciLab Installing MATLAB/SciLab Under windows/linux, Basics of MATLAB programming, Data Types, Creating variables, comments, multiline comments, Array operations in MATLAB/Scilab, Loops and execution control statements, inbuilt mathematical functions, Working with files: Scripts and Functions, Plotting and program output, overview of various toolboxes, introduction to Matlab simulink.

Introduction to Web Design Introduction, Elements, Tags, Attributes, Paragraph, Headings, Line Breaks, Horizontal Rule, Lists, Formatting, Color Codes, Font, Text Links, Email, Images, Image Link, Forms, Table, Frames, Comments, Music Codes, Video Codes, Div, DHTML: Cascading Style Sheet Introduction, Types of CSS, Selectors (Tags), Class and Id with the Selectors, CSS Background & Color, CSS Text, CSS Font, CSS Border, CSS Padding.

Reference Books:

- 1. Fausett L.V. (2007) Applied Numerical Analysis Using MATLAB, 2nd Ed., Pearson Education
- 2. Chapra S.C. and Canale R.P. (2006) Numerical Methods for Engineers, 5th Ed., McGraw Hill
- 3. N.P. Gopalan, "Web Technology", PHI.
- 4. Ivan Bayross, "HTML, JavaScript, DHTML and PHP", BPB Publication.

- 1. Write your first Matlab/Scilab program.
- 2. Extract an individual element of an array
- 3. Write Matlab/Scilab program to illustrate loops and control statements.
- 4. Create a simple plot.
- 5. Name the title, axes title of the plot.
- 6. Create a webpage with HTML describing your department on following points: Use paragraph and list tags. Apply various colors to suitably distinguish key words. Also apply font styling like italics, underline and two other fonts to words you find appropriate. Also use header tags.
- 7. Create a web page using HTML for following: Create a table to show your class timetable. Use tables to provide layout to your HTML page describing your university infrastructure.

ITA- 407 Industrial Training –I

Duration:- 2 weeks after the IVsemester in the summer break, Assessment in V semester. Students must observe following to enrich their learning during industrial training:

- Industrial environment and work culture.
- Organizational structure and inter personal communication.
- Machines/ equipment/ instruments their working and specifications.
- Product development procedures and phases.
- Project planning, monitoring and control.