BEA-401 Energy, Ecology, Environment and Society

UNIT -1

Sources of Energy : Renewable & Non Renewable, Fossil fuel, Biomass Geothermal, Hydrogen, Solar, Wind, hydro, nuclear sources.

UNIT-2

Segments of Environment: Atmosphere, hydrosphere, Lithosphere, biosphere. Cycles in Ecosystem – Water, Carbon, Nitrogen. Biodiversity: Threats and conservation

UNIT-3

Air Pollution: Air pollutants, classification, (Primary & secondary Pollutants) Adverse effects of pollutants. Causes of Air pollution chemical, photochemical, Green house effect, ozone layer depletion, acid Rain. Sound Pollution: Causes, controlling measures, measurement of sound pollution (deciblage), Industrial and non – industrial.

UNIT-4

Water Pollution– Water Pollution: Pollutants in water, adverse effects. Treatment of Domestic & Industrial water effluent. Soil Pollution – Soil Profile, Pollutants in soil, their adverse effects, controlling measures.

UNIT-5

Society, Ethics & Human values– Impact of waste on society. Solid waste management Nuclear, Thermal, Plastic, medical, Agriculture, domestic and e-waste). Ethics and moral values, ethical situations, objectives of ethics and its study. Preliminary studies regarding Environmental Protection Acts, introduction to value education, self exploration, sanyam & swasthya.

REFERENCES:

- 1. Harris, CE, Prichard MS, Rabin's MJ, "Engineering Ethics"; Cengage Pub.
- 2. Rana SVS ; "Essentials of Ecology and Environment"; PHI Pub.
- 3. Raynold, GW "Ethics in information Technology"; Cengage.
- 4. Svakumar; Energy Environment & Ethics in society; TMH
- 5. AK De "Environmental Chemistry"; New Age Int. Publ.
- 6. BK Sharma, "Environmental Chemistry"; Goel Publ. House.
- 7. Bala Krishnamoorthy; "Environmental management"; PHI
- 8. Gerard Kiely, "Environmental Engineering"; TMH
- 9. Miller GT JR; living in the Environment Thomson/cengage
- 10. Cunninghan WP and MA; principles of Environment Sc; TMH
- 11. Gandhiji M.K.- My experiments with truth

CSA- 402 Analysis Design Of Algorithm

UNIT-I

Algorithms, Designing algorithms, analyzing algorithms, asymptotic notations, heap and heap sort. Introduction to divide and conquer technique, analysis, design and comparison of various algorithms based on this technique, example binary search, merge sort, quick sort, strassen's matrix multiplication.

UNIT-II

Study of Greedy strategy, examples of greedy method like optimal merge patterns, Huffman coding, minimum spanning trees, knapsack problem, job sequencing with deadlines, single source shortest path algorithm.

UNIT-III

Concept of dynamic programming, problems based on this approach such as 0/1 knapsack, multistage graph, reliability design, Floyd-Warshall algorithm

UNIT-IV

Backtracking concept and its examples like 8 queen's problem, Hamiltonian cycle, Graph coloring problem etc. Introduction to branch & bound method, examples of branch and bound method like traveling salesman problem etc. Meaning of lower bound theory and its use in solving algebraic problem, introduction to parallel algorithms.

UNIT-V

Binary search trees, height balanced trees, 2-3 trees, B-trees, basic search and traversal techniques for trees and graphs (In order, preorder, postorder, DFS, BFS), NP-completeness.

References:

- 1. Coremen Thomas, Leiserson CE, Rivest RL; Introduction to Algorithms; PHI.
- 2. Horowitz & Sahani; Analysis & Design of Algorithm
- 3. Dasgupta; algorithms; TMH
- 4. Ullmann; Analysis & Design of Algorithm;
- 5. Michael T Goodrich, Robarto Tamassia, Algorithm Design, Wiely India
- 6. Rajesh K Shukla: Analysis and Design of Algorithms: A Beginner's Approach; Wiley

List of Experiments:

- 1. Write a program for Iterative and Recursive Binary Search.
- 2. Write a program for Merge Sort.
- 3. Write a program for Quick Sort.
- 4. Write a program for Strassen's Matrix Multiplication.
- 5. Write a program for optimal merge patterns.
- 6. Write a program for Huffman coding.
- 7. Write a program for minimum spanning trees using Kruskal's algorithm.
- 8. Write a program for minimum spanning trees using Prim's algorithm.
- 9. Write a program for single sources shortest path algorithm.
- 10. Write a program for Floye-Warshal algorithm.
- 11. Write a program for traveling salesman problem.
- 12. Write a program for Hamiltonian cycle problem.

CSA- 403 Software Engineering

UNIT I

The Software Product and Software Process Software Product and Process Characteristics, Software Process Models: LinearSequential Model, Prototyping Model, RAD Model, Evolutionary Process Models likeIncremental Model, Spiral Model, Component Assembly Model, RUP and Agileprocesses. Software Process customization and improvement, CMM, Product andProcess Metrics.

UNIT II

Requirement Elicitation, Analysis, and Specification Functional and Non-functional requirements, Requirement Sources and Elicitation Techniques, Analysis Modeling for Function-oriented and Object-oriented software development, Use case Modeling, System and Software Requirement Specifications, Requirement Validation, Traceability

UNIT III

Software Design The Software Design Process, Design Concepts and Principles, Software Modeling andUML, Architectural Design, Architectural Views and Styles, User Interface Design, Function- oriented Design, SA/SD Component Based Design, Design Metrics.

UNIT IV

Software Analysis and Testing Software Static and Dynamic analysis, Code inspections, Software Testing, Fundamentals, Software Test Process, Testing Levels, Test Criteria, Test Case Design, TestOracles, Test Techniques, Black-Box Testing, White-Box Unit Testing and Unit, Testing Frameworks, Integration Testing, System Testing and other Specialized, Testing, Test Plan, Test Metrics, Testing Tools. , Introduction to Object-oriented analysis, design and comparison with structured Software Engg.

UNIT V

Software Maintenance & Software Project Measurement Need and Types of Maintenance, Software Configuration Management (SCM), Software Change Management, Version Control, Change control and Reporting, Program Comprehension Techniques, Re-engineering, Reverse Engineering, Tool Support. Project Management Concepts, Feasilibility Analysis, Project and Process Planning, Resources

Allocations, Software efforts, Schedule, and Cost estimations, Project Scheduling and Tracking, Risk Assessment and Mitigation, Software Quality Assurance(SQA). Project Plan, Project Metrics.

Practical and Lab work Lab work should include a running case study problem for which different deliverable sat the end of each phase of a software development life cycle are to be developed. This will include modeling the requirements, architecture and detailed design. Subsequently the design models will be coded and tested. For modeling, tools like Rational Roseproducts. For coding and testing, IDE like Eclipse, Net Beans, and Visual Studio can be used.

References

- 1. Pankaj Jalote,"An Integrated Approach to Software Engineering", Narosa Pub, 2005
- 2. Rajib Mall, "Fundamentals of Software Engineering" Second Edition, PHI Learning
- 3.R S. Pressman ,"Software Engineering: A Practitioner's Approach", Sixth edition2006, McGraw-Hill.
- 4.Sommerville,"Software Enginerring",Pearson Education.
- 5. Richard H. Thayer,"Software Enginerring & Project Managements", WileyIndia
- 6. Waman S. Jawadekar, "Software Enginerring", TMH
- 7.Bob Hughes, M.Cotterell, Rajib Mall "Software Project Management", McGrawHill

List of Experiments:

- 1. To identify the role of the software in today's world across a few significant domains related to day to day life.
- 2.To identify the problem related to software crisis for a given scenario
- 3.To identify the suitable software development model for the given scenario.
- 4. To identify the various requirement development activities viz. elicitation, analysis, specification and verification for the given scenarios.
- 5. To identify the various elicitation techniques and their usage for the Banking case study.
- 6. To Classify the requirement into functional and non-functional requirements.
- 7. To identify the elements in software Requirements Specification document.
- 8. To verify the requirements against the quality attributes.
- 9.Understand Importance of SDLC approach & various processes.

CSA- 404 Computer Organization & Architecture

UNIT-I

Basic Structure of Computer: Structure of Desktop Computers, CPU: General Register Organization-Memory Register, Instruction Register, Control Word, Stack Organization, Instruction Format, ALU, I/O System, bus,CPU and Memory Program Counter, Bus Structure, Register Transfer Language-Bus and Memory Transfer, addressing modes. Control Unit Organization: Basic Concept of Instruction, Instruction Types, Micro Instruction Formats, Fetch and Execution cycle, Hardwired control unit, Micro-programmed Control unit microprogram sequencer Control Memory, Sequencing and Execution of Micro Instruction.

UNIT-II

Computer Arithmetic: Addition and Subtraction, Tools Compliment Representation, Signed Addition and Subtraction, Multiplication and division, Booths Algorithm, Division Operation, Floating Point Arithmetic Operation. design of Arithmetic unit.

UNIT-III

I/O Organization:I/O Interface –PCI Bus, SCSI Bus, USB, Data Transfer: Serial, Parallel, Synchronous, Asynchronous Modes of Data Transfer, Direct Memory Access(DMA), I/O Processor.

UNIT-IV

Memory Organization: Main memory-RAM, ROM, Secondary Memory –Magnetic Tape, Disk, Optical Storage, Cache Memory: Cache Structure and Design, Mapping Scheme, Replacement Algorithm, Improving Cache Performance, Virtual Memory, memory management hardware.

UNIT-V

Multiprocessors: Characteristics of Multiprocessor, Structure of Multiprocessor-Interprocessor Arbitration, Inter-Processor Communication and Synchronization. Memory in Multiprocessor System, Concept of Pipelining, Vector Processing, Array Processing, RISC And CISC, Study of Multicore Processor –Intel, AMD.

Reference Books:

1. Morris Mano, "Computer System Organization "PHI

2. Alan Clements: "Computer Organization and Architecture", Cengage Learning

3. Subrata Ghosal: "Computer Architecture and Organization", Pearson

4. William stalling, "Computer Architecture and Organization" PHI

5.M. Usha, T.S. Shrikant: "Computer System Architecture and Organization", Willey

India 6. Chaudhuri, P. Pal: "Computer Organization and Design", PHI

7. Sarangi: "Computer Organization and Architecture", Mc-Graw Hills

List of Experiments:

- 1. Study of Multiplexer and Demultiplexer
- 2. Study of Half Adder and Subtractor
- 3. Study of Full Adder and Subtractor
- 4. WAP to add two 8 bit numbers and store the result at memory location 2000
- 5. WAP to multiply two 8 bit numbers stored at memory location 2000 and 2001 and stores the result at memory location 2000 and 2001.
- 6. WAP to add two 16-bit numbers. Store the result at memory address starting from 2000.
- 7. WAP which tests if any bit is '0' in a data byte specified at an address 2000. If it is so, 00 would be stored at address 2001 and if not so then FF should be stored at the same address.
- 8. Assume that 3 bytes of data are stored at consecutive memory addresses of the data memory starting at 2000. Write a program which loads register C with (2000), i.e. with data contained at memory address2000, D with (2001), E with (2002) and A with (2001).
- 9. Sixteen bytes of data are specified at consecutive data-memory locations starting at 2000. Write a program which increments the value of all sixteen bytes by 01.
- 10. WAP to add t 10 bytes stored at memory location starting from 3000. Store the result at memory location 300A

CSA- 405 Operating Systems

UNIT-I

Introduction to Operating Systems: Function, Evolution, Different Types, Desirable Characteristics and features of an O/S, Operating Systems Services: Types of Services, Different ways of providing these Services – Utility Programs, System Calls.

UNIT-II

File Systems: File Concept, User's and System Programmer's view of File System, Disk Organization, Tape Organization, Different Modules of a File System, Disk Space Allocation Methods – Contiguous, Linked, Indexed. Directory Structures, File Protection, System Calls for File Management, Disk Scheduling Algorithms.

UNIT-III

CPU Scheduling : Process Concept, Scheduling Concepts, Types of Schedulers, Process State Diagram, Scheduling Algorithms, Algorithms Evaluation, System calls for Process Management; Multiple Processor Scheduling; Concept of Threads.

Memory Management: Different Memory Management Techniques – Partitioning, Swapping, Segmentation, Paging, Paged Segmentation, Comparison of these techniques, Techniques for supporting the execution of large programs: Overlay, Dynamic Linking and Loading, Virtual Memory – Concept, Implementation by Demand Paging etc.

UNIT-IV

Input / Output : Principles and Programming, Input/Output Problems, Asynchronous Operations, Speed gap Format conversion, I/O Interfaces, Programme Controlled I/O, Interrupt Driven I/O, Concurrent I/O.

Concurrent Processes : Real and Virtual Concurrency, Mutual Exclusion, Synchronization, Inter- Process Communication, Critical Section Problem, Solution to Critical Section Problem : Semaphores – Binary and Counting Semaphores, WAIT & SIGNAL Operations and their implementation. Deadlocks: Deadlock Problems, Characterization, Prevention, Avoidance, Recovery.

UNIT-V

Introduction to Network, Distributed and Multiprocessor Operating Systems. Case Studies: Unix/Linux, WINDOWS and other Contemporary Operating Systems.

TEXT BOOKS RECOMMENDED:

1.Silberschatz, Galvin, Gagne, "Operating System Concepts", Wiley, 9/E 2.William Stalling, "Operating Systems", Pearson Education.

REFERENCE BOOKS:

1. Andrew S. Tanenbaum, "Modern Operating Systems", 3/e, Prentice Hall

2. Maurice J. Bach, "The Design of Unix Operating System", Prentice Hall of India,

3. Bovet & Cesati, "Understanding the Linux Kernel", O'Reily, 2/E.

List of Experiment:

- 1. Write a program to implement FCFS CPU scheduling algorithm.
- 2. Write a program to implement SJF CPU scheduling algorithm.
- 3. Write a program to implement Priority CPU Scheduling algorithm.
- 4. Write a program to implement Round Robin CPU scheduling algorithm.

5. Write a program to compare various CPU Scheduling Algorithms over different Scheduling Criteria.

6. Write a program to implement classical inter process communication problem(producer consumer).

7. Write a program to implement classical inter process communication problem(Reader Writers).

8. Write a program to implement classical inter process communication roblem (Dining_Philosophers)

- 9. Write a program to implement & Compare various page replacement algorithm.
- 10. Write a program to implement & Compare various Disk & Drum scheduling Algorithms
- 11. Write a program to implement Banker's algorithms.
- 12. Write a program to implement Remote Proceedure Call(RPC).
- 13. Write a Devices Drivers for any Device or pheriperal.

CSA-406 Programming Practices

UNIT-I

Basic Java Features - C++ Vs JAVA, JAVA virtual machine, Constant & Variables, Data Types, Class, Methods, Objects, Strings and Arrays, Type Casting, Operators, Precedence relations, Control Statements, Exception Handling, File and Streams, Visibility, Constructors, Operator and Methods Overloading, Static Members, Inheritance: Polymorphism, Abstract methods and Classes

UNIT-II

Java Collective Frame Work - Data Structures: Introduction, Type-Wrapper Classes for Primitive Types, Dynamic Memory Allocation, Linked List, Stack, Queues, Trees, Generics: Introduction, Overloading Generic Methods, Generic Classes, Collections: Interface Collection and Class Collections, Lists, Array List and Iterator, Linked List, Vector. Collections Algorithms: Algorithm sorts, Algorithm shuffle, Algorithms reverse, fill, copy, max and min Algorithm binary Search, Algorithms add All, Stack Class of Package java. Util, Class Priority Queue and Interface Queue, Maps, Properties Class, Un-modifiable Collections.

UNIT-III

Advance Java Features - Multithreading: Thread States, Priorities and Thread Scheduling, Life Cycle of a Thread, Thread Synchronization, Creating and Executing Threads, Multithreading with GUI, Monitors and Monitor Locks. Networking: Manipulating URLs, Reading a file on a Web Server, Socket programming, Security and the Network, RMI, Networking, Accessing Databases with JDBC: Relational Database, SQL, MySQL, Oracle

UNIT-IV

Advance Java Technologies - Servlets: Overview and Architecture, Setting Up the Apache Tomcat Server, Handling HTTP get Requests, Deploying a web Application, Multitier Applications, Using JDBC from a Servlet, Java Server Pages (JSP): Overview, First JSP Example, Implicit Objects, Scripting, Standard Actions, Directives, Multimedia: Applets and Application: Loading, Displaying and Scaling Images, Animating a Series of Images, Loading and playing Audio clips

UNIT-V

Advance Web/Internet Programming (Overview): J2ME, J2EE, EJB, XML.

References:

- 1. E. Balaguruswamy, "Programming In Java"; TMH Publications
- 2. The Complete Reference: Herbert Schildt, TMH
- 3. Deitel & Deitel, "JAVA, How to Program"; PHI, Pearson.
- 4. Cay Horstmann, Big JAVA, Wiley India.
- 5. Merlin Hughes, et al; Java Network Programming, Manning Publications/Prentice H

List of Experiment:

- 1. Installation of J2SDK
- 2. Write a program to show Scope of Variables
- 3. Write a program to show Concept of CLASS in JAVA
- 4. Write a program to show Type Casting in JAVA
- 5. Write a program to show How Exception Handling is in JAVA
- 6. Write a Program to show Inheritance
- 7. Write a program to show Polymorphism
- 8. Write a program to show Access Specifiers (Public, Private, Protected) in JAVA
- 9. Write a program to show use and Advantages of CONTRUCTOR
- 10. Write a program to show Interfacing between two classes
- 11. Write a program to Add a Class to a Package
- 12. Write a program to show Life Cycle of a Thread
- 13. Write a program to demonstrate AWT.
- 14. Write a program to Hide a Class
- 15. Write a Program to show Data Base Connectivity Using JAVA
- 16. Write a Program to show "HELLO JAVA" in Explorer using Applet
- 17. Write a Program to show Connectivity using JDBC
- 18. Write a program to demonstrate multithreading using Java.
- 19. Write a program to demonstrate applet life cycle.
- 20. Write a program to demonstrate concept of servlet.

CSA-407 Industrial Training –I

The following objective should be fulfilled in industrial training –I, and student must participate in any aerospace/aeronautical industry where they can learn to apply the Technical knowledge in real Industrial situations.

- ➢ Gain experience in writing Technical reports/projects.
- > Expose students to the engineer's responsibilities and ethics.
- Expose the students to future employers.
- Understand the social, economic and administrative considerations that influence the working environment of industrial organizations